Elliptic Curves and Class Fields of Real Quadratic Fields: Algorithms and Evidence
نویسندگان
چکیده
Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
منابع مشابه
On the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملReduction of elliptic curves over certain real quadratic number fields
The main result of this paper is that an elliptic curve having good reduction everywhere over a real quadratic field has a 2-rational point under certain hypotheses (primarily on class numbers of related fields). It extends the earlier case in which no ramification at 2 is allowed. Small fields satisfying the hypotheses are then found, and in four cases the non-existence of such elliptic curves...
متن کاملComputing the rank of elliptic curves over real quadratic number fields of class number 1
In this paper we describe an algorithm for computing the rank of an elliptic curve defined over a real quadratic field of class number one. This algorithm extends the one originally described by Birch and Swinnerton-Dyer for curves over Q. Several examples are included.
متن کاملRanks of Elliptic Curves with Prescribed Torsion over Number Fields
We study the structure of the Mordell–Weil group of elliptic curves over number fields of degree 2, 3, and 4. We show that if T is a group, then either the class of all elliptic curves over quadratic fields with torsion subgroup T is empty, or it contains curves of rank 0 as well as curves of positive rank. We prove a similar but slightly weaker result for cubic and quartic fields. On the other...
متن کاملDescent by 3-isogeny and 3-rank of quadratic fields
In this paper families of elliptic curves admitting a rational isogeny of degree 3 are studied. It is known that the 3-torsion in the class group of the field defined by the points in the kernel of such an isogeny is related to the rank of the elliptic curve. Families in which almost all the curves have rank at least 3 are constructed. In some cases this provides lower bounds for the number of ...
متن کاملGross–stark Units, Stark–heegner Points, and Class Fields of Real Quadratic Fields
Gross–Stark units, Stark–Heegner points, and class fields of real quadratic fields by Samit Dasgupta Doctor of Philosophy in Mathematics University of California, Berkeley Professor Kenneth Ribet, Chair We present two generalizations of Darmon’s construction of Stark–Heegner points on elliptic curves defined overQ. First, we provide a lifting of Stark–Heegner points from elliptic curves to cert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 11 شماره
صفحات -
تاریخ انتشار 2002